Passive vs. Active Electrode - Slew-Rate Problem New

It was brought to our attention that a rumour is buzzing around among EEG researchers that there may be an inherent noise problem with active electrodes. The source of this rumour is a paper published by Sarah Laszlo et al. in 2014 (see A direct comparison of active and passive amplification electrodes in the same amplifier system). In this paper, the authors compare the performance of one particular brand (not BioSemi) active electrodes with passive electrodes, both connected to a conventional EEG amplifier (also not BioSemi). Both active and passive electrodes setups were tested with low (2 kOhm) and high (50 kOhm) electrode-to-skin impedances.

The authors find that the total noise (250 Hz bandwidth) for passive electrodes is higher with high electrode impedance, whereas the total noise with the active electrodes is equal (and nearly as low as with passive electrodes with low impedance) for both low and high electrode impedances. However, they also determine that the number of sweeps needed to achieve a reliable ERP result is higher with high electrode impedances for both the active and passive setups. Note though, that the number of required sweeps did not show significant differences between active and passive setups.

The paper starts to derail when the authors attempt to explain why in the tests with high skin-to-electrode impedances, the number of sweeps required for reliable ERP is similar for active and passive setups, instead of a lower number of sweeps for the active case as they would expect on the basis of the better total noise results. So although the active electrodes do not perform any worse than passive electrodes, they basically wonder why the performance is not better than it is.

A logical first step in analyzing the above discrepancy would have been to analyze the noise spectra (for example a relatively small band of extra noise with frequencies around the ERP waveform would explain that the total noise number is hardly influenced whereas the number of required sweeps would certainly be affected). Instead, the authors choose to introduce a hypothesis without any support by measurements or references. The authors suggest that the amplifier in the used active electrodes has a slew rate that is limited to such an extent that it causes distortion of the ERP wave, leading to a higher required number of sweeps than would be expected on the basis of the total noise figures.

It is certainly true that slew rate limitations can lead to signal distortion. The effect usually plays a role only with large (several volts) signals at high (several MHz) frequencies. Suggesting slew rate limitations as a problem for EEG signals (amplitudes in the hundreds of uV range and frequencies below a few hundred Hz) sounds far fetched.

How extreme the hypothesis actually is, can be illustrated by some numbers. The paper shows ERP results with a bandwidth of 250 Hz and an amplitude of 6 uV. The required slew rate to acquire this waveform without distortion is approx. 0.01 V/s (min SR = 2*pi*f*Vpk-pk, see for example the Wikipedia page on Slew Rate). Now consider the standard BioSemi ActiveTwo EEG system with active electrodes. At 16 kHz sample rate, this system can acquire a 3 kHz, 0.5 Vpk-pk wave without significant distortion. The complete system (active electrodes, post-amplifier, analog-to-digital converter) therefore has a slew rate of at least 10,000 V/s (or 0.01 V/us in the more usual notation). The standard BioSemi active electrodes are also applied in a high-frequency version of the ActiveTwo system with 262 kHz sample rate. The setup accurately acquires a maximal sine wave of 80 kHz, 0.5 Vpk-pk, leading to a slew rate estimate for the standard BioSemi active electrodes of at least 0.2 V/us. This is a factor of 20 million faster than in the Laszlo hypothesis. Refer to the following result for a 20 kHz, 40 mVpk-pk input signal acquired with standard BioSemi electrodes and a 262 kHz sample rate version of the ActiveTwo system (the dots indicate sample points at 3.8 us intervals). Note the fast rise and fall times of the square wave edges indicating good slew rate performance (the plot shows rise/fall times of approx 10 us, this is a limitation for step responses of the decimation filter in the ADC).

Designers of EEG systems, with or without active electrodes, all make use of a relatively small pool of quite similar Op-amps (building blocks for amplifier circuits) and ADCs provided by a handful of semiconductor manufacturers. These components all offer slew rates far beyond what is minimally required for EEG signals. I am therefore quite sure that our competitors can present results similar as found for the BioSemi setup. This is supported by the input range and bandwidth figures published by various manufacturers. While I would not hesitate to spread doubts about performance aspects of products by BioSemi's competitors, the limited slew rate argument is so unlikely for any currently available EEG system (with or without active electrodes) that I would never consider using it.

In other words: it is doubtful that the particular (non BioSemi) active electrode evaluated in the paper has a slew rate with a factor of 20 million slower than the BioSemi active electrode. Anyway, such an extremely slow slew rate would have been immediately apparent in the waveforms generated by relatively large and fast artifacts in the EEG signal, such as eyeblinks. In addition, the phenomenon would have been straight forward to measure by connecting the active electrodes to a signal generator. The paper does not indicate that any attempt was made to verify the hypothesis with measurements. Given that the particular active electrodes as tested in the paper are quite widespread under EEG researchers, it is hard to imagine that a slew rate limitation of 0.01 V/s would have remained unnoticed for years among these researchers.

The authors make things worse by stating that slew rate limitations are more severe for amplifiers "at very low output impedance". They even refer to BioSemi to support this claim. In reality, BioSemi never has made such a statement and with good reason: it simply is not true. There are numerous amplifier designs with high slew rate and low output impedance, the BioSemi active electrode as presented above is just an example.

The last sentence of the paragraph is the most bizarre. While it is, of course, true that passive electrodes do not have the slew rate limitations associated with amplifier circuitry, the authors overlook that the input stage of an EEG amplifier for passive electrodes also has high input impedance, low output impedance and slew rate limitations. In terms of amplifier noise, input and output impedances and slew rate, the only principle difference between the active and the passive setup is the location of the first amplifier stage. The statement that "slew rate [..] is simply not an issue for passive electrodes" is therefore surprising. In reality, both active electrodes and input stages for passive electrodes have the same slew rate limitations, although as outlined above, it is unlikely that any EEG system (active or passive) using currently available electronic components will present a problem in this respect. Instead, the authors suggest that slew-rate limitation is an inherent problem encountered with all active electrodes (regardless of brand and design), whereas the effect is totally eliminated in all amplifiers for passive electrodes.

To summarize: the paper presents an unlikely hypothesis that is not verified and not supported by any valid reference. The authors fail to do the simple measurements or numerical evaluation that would have readily falsified the hypothesis. Nevertheless, they find themselves qualified to apply this questionable hypothesis not only to the particular active electrode evaluated in the paper but to the active electrode design in general. In effect, they disqualify all active electrodes, including the successful BioSemi design, and confuse the scientific discussion about the merits of the active electrode principle. It is peculiar to see that such an unjustified accusation, that may affect legitimate manufacturers who put a lot of effort in improving EEG acquisition systems, can make it through the review process of Journal of Neuroscience Methods.

This is an article published by Coen Metting van Rijn, PhD, director, BioSemi, 5-December 2019

FAQ: How shall I disinfect EEG caps and electrodes and what kind of disinfection solution shall I use after each recording sessions? New


Soap is a lipophilic substance, meaning that it has the ability to chemically bind to fatty/oily substances. The weakest link of the novel SARS-CoV-2 (a.k.a. COVID-19 virus) is the lipid (fatty) bilayer membrane. Due to this fact, soap will resolve the fatty outer layer of the virus and it becomes inactive. We advise cleaning the head-caps with warm water and soap. A shampoo optimized for delicate fabric is advised, such as Ivory Shampoo (which can be purchased from our online shop:, or similar. When cleaning, use a soft brush to clean and degrease the inside of the electrode holders.

According to literature, alcohol (ethanol or isopropanol) makes the virus inactive within 30 seconds. The electrodes can be submerged in alcohol without damage. Hence, submerging the electrodes for five minutes in alcohol should be the most effective way to prevent COVID-19 infections. Furthermore, the U.S. Food and Drug Administration (FDA) recommends using alcohol-based disinfectant solutions with greater than 60% ethanol or 70% isopropanol. 


Browse Disinfectants

BESA MRI 3.0 released New

BESA MRI 3.0 has just been released and we are happy to announce the several new features to enhance your data analysis and results review. These new features include:

  • Automated Boundary Element Model (BEM) calculation for use in BESA Research source modelling
  • Sufficient automated algorithm for placing electrodes recorded in standard 10-10 positions onto individual head surface reconstructed from MRI
  • User-configurable multi-slice view of MRI images
  • Several brain atlases available for display on structural MRI in a single view or multi-slice view
  • Display BESA Research discrete source analysis solutions in individual MRI with confidence limit of source location
  • Support for lossless .jpg compressed DICOM files
  • Improvements in co-registration visualization and user interaction

The latest BESA MRI 3.0 runs in combination with BESA Research 7.1 and 7.0. Individual head models (BEM, FEM) generated with BESA MRI 3.0 can be imported from BESA Research 7.x for EEG or MEG source analysis. EEG / MEG data can be co-registered with individual MRI data using individually digitized electrode positions or head shape models.

Get the latest BESA MRI 3.0 license directly from the NEUROSPEC online shop. Visit our online store today to get the latest version of BESA MRI today!

Purchase BESA MRI 3.0


Analysing Timing Accuracy of the ActiveTwo (BioSemi) New

Manufacturers of EEG systems all face similar challenges when it comes to designing hardware for high-quality and time accurate EEG measurements. High-quality components, good data recording techniques and the right selection of tools is crucial to acquiring reliable and repeatable results for a wide array of life science applications including Psychophysiology, Exercise Physiology, Sleep Studies, and more.

In this video, we will explain and discuss how to precisely measure and analyse delays of your EEG system. We will briefly demonstrate a typical EEG setup with stimulation presentation computer running a VEP (visually evoked potential), simultaneously sending triggers through the MMBT-S to the receiving EEG system (ActiveTwo, BioSemi).

You Will Learn:

  • How to measure delays between incoming triggers (on the USB receiver) and trigger onset (ERGO input on the AD-Box)
  • A possible EEG system (ActiveTwo, BioSemi) setup with a stimulus presentation computer running a VEP (brief overview)
  • Sending triggers from the software Presentation, through the MMBT-S to the ActiveTwo EEG system (brief overview)
  • How to record an EEG datafile with triggers in ActiView (brief overview)
  • How to read a recorded EEG datafile with triggers in the BDF reader software from BioSemi
  • How to utilize the BDF reader software from BioSemi


Warning: this setup is for demonstration purposes only and must not be replicated!


BESA Research 7.1 New

A plethora of innovative features in this new update of BESA Research!

BESA released BESA Research 7.1 and it is packed with innovative features, a new way to view source imaging.

Further, BESA Research 7.1 offers full integration with the recently released BESA MRI 3.0. The integration allows for the use of individual head models as well as the visualisation of solutions. With this new version, you will now be able to simultaneously model EEG as well as MEG.

These are only two new features in the newest update but you can read about all of them over on BESA's update page.

Purchase BESA Research 7.1


Sleep & Health Zurich (SHZ) Symposium 2020 - ONLINE (Zoom) New

We are excited to be sponsoring this years Sleep and Health Symposium in Zurich, Switzerland. The symposium will take place at the Kunsthaus Zurich (Heimplatz 1, Vortragssall). Leading physicians and researchers from the field of Sleep and Health will give talks on exciting topics such as "Netflix, Social Media or Relaxation? The Influence of Bedtime Activities on Sleep", "The Multifunctional Thalamus: Control of Sleep and Wake" and also speak about the future and "Where No Sleep Researcher Has Gone Before".

Get in touch with us if you wish to join us for an exciting day talking about the latest advancements in Sleep research!

Due to the current unforeseen spreading of the Corona Virus in Switzerland, the symposium has been postponed to the 27th of November, 2020. Contact us if you wish for further updates concerning the symposium.

Sleep & Health Zurich (SHZ) Symposium 2020 - ONLINE (Zoom)

Friday, November 27, 2020

Contact Us


With the unfortunate global situation concerning the Covid-19, we are sad to inform you that the AS4SAN committee has decided to postpone the conference until further notice. We are all in this situation together and hope that you stay safe. More updates will come as soon as we know more.

For more information keep an eye on the homepage of the AS4SAN conference.

Webinar: How to Integrate Psychophysiological & Behavioral Data Using BIOPAC and Noldus New

If you’re working with The Observer XT and/or AcqKnowledge software, this webinar will dive deeper into the benefits of integrating data seamlessly. How to study behaviour and physiology using Noldus and BIOPAC tools is at the core of this webinar.

What you will learn:

  • In part one of this webinar, we’ll elaborate on what is possible when using systems from BIOPAC and Noldus. What do you want to measure? This might be achievable when using a combination of Noldus behavioural software and BIOPAC’s AcqKnowledge software and measurement sensors.
  • In parts two and three, we’ll show the actual workflows to you, so you can learn how to set up your system now or in the future.


Register Now

Wearable Sensing Webinar now on YouTube New

Wearable Sensing's most recent webinar is now on YouTube for you to watch on demand.

In this webinar, you will learn more about Wearable Sensing's dry electrode technology, the various dry electrode EEG systems offered and how they integrate with VR, and, lastly how you can utilize EEG + VR in various research, medical, and commercial applications.

Have a look now and if you are interested in aquiring a Wearable Sensing system for yourself let us know!


BIOSEMI - ActiveTwo

BIOSEMI - bringing EEG and ERP to a new level with the original Active Electrode and ActiveTwo EEG Amplifier.

BESA - Research 7.0

BESA - the leading innovators in digital EEG, MEG and MRI software for research and clinical applications.


SHIMADZU - Next-Generation Optical Brain-Function Imaging with functional near-infrared spectroscopy (fNIRS)